MOTION OF A CONTINUOUS MEDIUM WITH AN
INTERNAL ANGULAR VELOCITIES CORRELATION

A, S, Kompaneets UDC 532.503.1

Equations are analyzed which yield a closer approximation to the inertial terms in the con-
ventional equations of hydrodynamics by accounting for the angular velocities correlation in
adjacent volume elements. Both an isotropic and an anisotropic fluid are considered.

1. Much attention is nowadays paid to the equation of mechanics for a medium whose motion cannot
be described by specifying the displacements of discrete particles and whose motion includes, as an addi-
tional degree of freedom, rotation of discrete volume elements [1-4]. These equations differ radically
from the conventional equations of mechanics for a continuous medium, In this study the author proposes
a somewhat different approach to the problem, by formulating it in more classical terms. It is well known
that the conventional equations of motion for a continuum are derived from the molecular-kinetics equa-
tion, with the mean-squared velocity in any volume element assumed equal to the mean-over-the-volume
velocity squared. The entire energy not expended on translatory motion of the center of mass is converted
into internal thermodynamic energy. If the medium also rotates nonuniformly near a vortex filament, for
example, then it becomes possible to introduce into the equations additional nondissipative terms account-
ing for regular motion. Such a correction may be appreciable in the case of highly associated fluids or
solutions containing long linear chains of polymer molecules.

It has been stated in [4] that a system of equations is incomplete if it does not include rotation of a
medium as the additional degree of freedom independent of forward displacements, Possibly, the authors
of [4] have not taken into account the inertial terms associated with rotation. Here we will derive the
equations of motion from the Lagrange function, thus ensuring completeness of the system and all neces-
sary characteristics of invariability. As to the additional internal rotation of molecules, we do not yet
quite know to what extent it can be accounted for in nonguantum terms. A transition from the rotation of
discrete molecules to the concepts of continuum theory is yet to be validated even in classical mechanies.

2. The derivation does not require any special assumptions concerning the model characteristics.
The medium retains its complete homogeneity at all points and its isotropy in all directions. The refine-
ment here consists in expressing the kinetic energy not only in terms of the mean velocity squared but also
in terms of the velocity curl squared, whose coefficient is proportional to the correlation distance between
velocities. If many more than one molecule are packed into this distance, then the mechanics of continua
is applicable. In this way, wehave assumedthat it is easier to rotate than to deform a fluid. In the general
case it would be necessary also to include a term which is proportional to the deformation rate squared.

If dissipative forces are neglected, then Pascal's Law may be applied to a fluid, i.e., one may con-
sider pressure to be a scalar quantity. Assuming the fluid to be incompressible, we will write for it the
Lagrange function:

J
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In order to perform variational calculus here, we first change to Lagrangian coordinates, i.e.,
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Variation with respect to the curl v must account for the fact that a curl implies differentiation with
respect to Eulerian and not Langrangian coordinates. Considering that the Jacobian of the transformation
is equal to unity for an incompressible fluid, we write one of the partial derivatives as follows:
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The variation of this expression is
du,  0(0xy, X5 Xg) | 0(0y Oxy, Xg) |, 0(vg X5 0%y
Ox; a 0(ay, 0y a5 d(ay, Gy ay) 0(ay, 4y a5)
_ 08v, . 4 (v,, 6x,) X 0 (v, Oxy) .
0%, (xy, Xy) Axy, xs)

Here the first term is transformed, as usually, by parts of the expression for the force S = S Ldt. Inte-

grating by parts the other two terms with respect to space, and changing to vector notation, we find the
variational derivative of the Lagrange function:
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i.e., the equation of motion.

At a rigid wall it is necessary to let the tangential component of curlyV vanish, since a wall does
not allow a fluid to revolve about an axis in the plane of the wall,” Furthermore, as usual, the normal
component of velocity is also equal to zero here.

The normal components of the momentum flux vanish at the free surface. We define these compo-
nents according to Eq. (2), which will be written to reflect the Conservation Law:

% (pvi—E—qurlicur'l—zj) —+ G(jck (pﬁlk—{—pvivk—{—Jvicurl,kcurlz_;
+ Jvhcuxlicurlg—l— Jeur, ;curlk ;) = 0. ©)
Thus, the momentum density becomes
pv; + qur’lzcurli—;, @) »
and the momentum flux density
POyt pvop+-J (vicurlhcuﬂ;—}- vyewrl; curl ;~l—curl,; veul R;). (5)

The terms which are functions of the velocity and the velocity curl may be characterized as dynamic
stresses. This tensor is symmetric. Asymmetry appears only when rotation not included in curl ¥V is
taken into account.

In order to find the moment density, one must vary the coordinates and the velocities corresponding
to a rotation through a small angle §¢. It is easy to show thenthatthe variation § ¥, which should vanish,
is equal to

6;5 -L%— [_r: pv-+Jeurl curl;).]. ©)

Consequently, the moment density is
[ pv - Jeuil curlg], 0
in agreement with expression (5) for the momentum density.

In order to find the expressions for the energy density and the energy flux density, it is necessary,
as usually, to multiply Eq. (2) scalarly by V" and then integrate by parts over the volume. Except when the
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fluid rotates as arigid body, onemaylet curve¥ = 0 at an infinitely far surface, Then, the following expres-
sion is obtained for the energy density (retaining only the term which is a function of J):

E; = :5({ (curt 2)2, (8)
and for the energy flux density corresponding to (8):
JZ(;CUII curl;—!— —‘1)— (cml?)z) . 9)

We will now show that, when the entire fluid rotates as a rigid body, the energy contains no com-
ponents proportional to curl ¥ . They drop out of Eq. (2), since in the case of a rotating rigid body curl
¥ is not a function of the space coordinates. Expression (8) for the energy density cannot be separated
now from the surface-integral components, since these do not vanish, With the substitution vV = [;?], av
Jdt = [[51')] and with the surface integrals retained, all terms containing curl ¥ are identically reducible.

In conclusion, we will derive an equation for the velocity distribution near a vortex filament, By
analogy to conventional hydrodynamics but taking into account the angular velocities correlation, we have

pcuﬂ;—E— qurlcurlcurig = 0. 10)

From here we find the expression for the velocity

v:—i(l——r ‘/—3——1\(’1<rl/i’£) . (11

The filament radius is of the order of the quantity VJ/p, i.e., is comparable to the correlation distance.

3. The motion of an anisotropic fluid or a fluid just produced by melting a single crystal may have
anisotropicinertial properties. The inertia mustnowbe described by a symmetric tensor of second rank rather
than by the scalar J. The principal axes of this tensor must be thought of as rigidly coupled to a fluid
particle, then it can he treated as some set of certain constants characterizing the fluid,

Since generally a volume element of fluid rotates continuously, the kinematics of rotation must be
introduced into the equation of motion. There is 2 method known in which rotations of axes can be repre-
sented by four Euler parameters [5] with only one additional condition. These parameters are expressed
by Euler angles as follows:

g b, e ) P—o

=sin — sin ct —sin O :
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where £t = 1. A double Greek symbol denotes summation from 1 to 4.

The angular velocities and the cosines of the angles between moving and fixed axes will be expressed
in terms of parameters ¢, and their time derivatives. In the conventional notation these equations are
not quite symmetrical and, therefore, they can be formulated on the basis of certain general rules. An
application of Pauli matrices [6] and of quarternions will be very helpful here.

For an arbitrary pair of quantities ¢, £, or £;, £, the Pauli matrices are set up as follows:

01, = 0—i I 1
BT 0T 0 BT ot a
The rows and the columns of these matrices are numbered with Greek letters equivalent to either 1, 2 or
3, 4. According to P. A, Dirac [6], we introduce another three matrices p;, py, and p; which look like

o1, 09, and gy but act directly on the pair £, £, or £3, £4. In other words, p; singly represent both pairs,
etc. Obviously, of and pj are transposable for any i and k, since they act on different variables. The
following relations are valid within each triplet:

2 -~ g2 =¢% =1 = — = {0,
0% = 0% = 02 = 1, 0,0, 0,0, = i0;

Lo s ’ (14)
0,0) = — 0,0, = [0y; 0,03 = ~— 0,0, = [0}

and analogously for py.
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We will now determine such operators called quarternions:
Iy = —ip,0y; Ty =ip,04 Ty=—io, (15)

Obviously, each operator I'y ,,5 is a matrix of fourth rank acting on the basis ¢, . At the same time,
however, the quantities denoted with symbols 1, 2 and 3, 4 have the vector property. Namely, during a
rotation of the coordinate system I';, Ty, and I’y are symbolically transformed like vector components:

F; = aikI‘h. (16)

It can be easily proved with the aid of equalities (14) that the transform I‘i satisfies the same conditions
as the original, i.e., that

Iy=—T,F, =T, T} =T} =Ti=1 etc. 17)

With the aid of quarternions it becomes easy to express the projections of angular velocity on the
moving system of coordinates:

o, =, (F_i)aﬁ gﬁ' (18)
Omitting the Greek subscript, we will simply write
o, =ET;E (18a)

~As it turns out, the cosines ey} themselves can be expressed in terms of quarternions., For this
purpose one needs still another triplet of quarternions:

f1 == 0,0, sz =ipy; _F:;:"‘ ipy0,. (19)

_I-‘I, f‘z, and f‘g are subject to the same rules of multiplication as Iy, I'y, and T';, and all f‘i quarternions
are transposable with all T quarternions. The cosines of angles betwen the old and the new axes are
expressed in terms of Ti, Tk as follows:

o= ET,T,E, (20)

which al}ows us to use the tensor notation.

We will consider the rotation of some hypermolecular association or cluster to be entirely due to
the motion of the volume element within which it finds itself. Such a motion resembles the rolling of a
rigid body without sliding or the revolution of the moon around the earth: the displacement rate determines
the angular velocity about the axis, In the case of a continuum, the projections of the angular velocities
onto the fixed axes can be expressed in terms of curl V':

m? = %cuﬂi v. 21)

In order to calculate the kinetic energy of rotation in the case of an anisotropic medium, one must
project w” onto the axes coupled to the medium, This is accomplished with the aid of relations (20):

ENE =0, =a;0)=ENTE - — C‘-‘ﬂh 0, 22)

Equations (22) yield the kinematic cond1t10ns for determining the Euler parameters £y if the relation
£t =tqbq =11s also used, The derivative ,g must be understood in the material sense.

During the motion of a continuum with anisotropic properties, however, the velocity cannot in fact
be found separately from the parameters £, also contained in the equations of motion. In order to write
out these equations, we will construct the corresponding Lagrange function. In the absence of dissipative
forces, the pressure must be first treated as a scalar quantity, Denoting the first principal moments of
inertia by J(1), (2) and JG), we write the Lagrange function as follows:

:Sxdv= pv + EJ() a0 Cwly churllv—p)dV 23)

i=1

In performing a variation, one must consider the variable quantities o). to be functions of the
Lagrangian coordinates, as also the parameters ¢,. The rotation field of local axes of inertia is then
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determined from the kinematic relations (22) and (23) together with the dynamic equations. The variation
is calculated analogously as for the isotropic case. Let &7 be the component of the density of the
Lagrange function which is due to rotation. Let

, ,
! @ > a4
88 r=25 > JW a0 00l vecurl v=fScurl, o

i=1

1 du, Oy,
= — f..8 vt . 2R s 24
2 Fin (0xi 0x;, ) ; @)
wheref] = (1/2)gjjidik. Then the variational derivative is
8x, 0xy, 0y, 0%y, ot 0xy,

In this form it is not equal to zero, however, because of the nonholonomic coupling between the variables
based on equality {22). In order to write the equation of motion, one must take this coupling into account
as an additional condition. By virtue of the homogeneity of (22) with respect to the generalized velocities,
properties which make the system conservative are retained, i.e., a nonholonomic coupling of this kind
does not imply dissipation. It is to be noted that the equation does not contain second derivatives of ¢ and,
therefore, the parameters ¢ are purely kinematic ones.

NOTATION
a (@i agsas) is the Lagrangian coordinates of a fluid particle;
@ik is the directional cosines of the angles between fixed and moving axes;
I‘i is the quarternions;
dik is the unit tensor;
&ik] is the completely antisymmetric tensor;
g3 = —gap3 = 1
J is the scalar coefficient characterizing the density of the moment of inertia;
J (1), 70, g @) is the density of the moments of inertia tensor (of its principal values);
K, is the first-order MacDonald function;
L is the Lagrange function for a fluid;
& is the density of the Lagrange function for a fluid;
wi is the components of the angular velocity vector;
P is the pressure;
T (X1, Xp, X3) if the radius vector in the fixed system of coordinates;
0 is the density of the medium;
P1s P2 P3 is the matrices analogous fo the Pauli matrices;
S is the force; A
Oy 095 03 is the Pauli matrices;
V(Vy, Vg, V3) is the velocity of the fluid;
£q @=1,2,3,4) isthe Euler parameters;
@ b P is the Euler angles.
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