
MOTION OF A CONTINUOUS MEDIUM WITH AN 

INTERNAL ANGULAR VELOCITIES CORRELATION 
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Equations are  analyzed which yield a c loser  approximation to the inert ial  t e r m s  in the con-  
ventional equations of hydrodynamics  by accounting for the angular velocit ies corre la t ion in 
adjacent volume e lements .  Both an isotropic and an anisotropic  fluid are  considered.  

1. Much attention is nowadays paid to the equation of mechanics  for  a medium whose motion cannot 
be descr ibed by specifying the displacements  of d iscre te  par t ic les  and whose motion includes, as an addi- 
tional degree of f reedom, rotation of d iscre te  volume elements [1-4]o These equations differ radically 
f rom the conventional equations of mechanics  for a continuous medium.  In this study the author proposes  
a somewhat different approach to the problem, by formulating it in more  c lass ical  t e r m s .  It is well known 
that the conventional equations of motion for a continuum are  derived f rom the molecular -k ine t ics  equa- 
tion, with the mean-squared  velocity in any volume element assumed equal to the mean-ove r - the -vo lume  
velocity squared.  The entire energy not expended on t rans la to ry  motion of the center  of mass  is converted 
into internal thermodynamic  energy .  If  the medium also rota tes  nonuniformly nea r  a vortex filament,  for 
example, then it becomes  possible to introduce into the equations additional nondissipative t e rms  account-  
ing for regula r  motion.  Such a cor rec t ion  may be appreciable in the case  of highly associated fluids or  
solutions containing long l inear  chains of polymer  molecules .  

It has been stated in [4] that a sys tem of equations is incomplete if it does not include rotation of a 
medium as the additional degree of f reedom independent of forward displacements .  Possibly,  the authors 
of [4] have not taken into account the inert ial  t e r m s  associated with rotat ion.  Here we will derive the 
equations of motion f rom the Lagrange function, thus ensuring completeness  of the system and all n e c e s -  
sa ry  charac te r i s t i c s  of invariabi l i ty .  As to the additional internal rotation of molecules ,  we do not yet  
quite know to what extent it can be accounted for in nonquantum t e r m s .  A transi t ion f rom the rotation of 
discrete  molecules  to the concepts of continuum theory is yet to be validated even in c lassical  mechanics .  

2. The derivation does not require  any special assumptions concerning the model cha rac t e r i s t i c s .  
The medium retains  its complete homogeneity at all points and i ts  isotropy in all d i rect ions .  The ref ine-  
ment here  consis ts  in express ing the kinetic energy not only in t e r m s  of the mean velocity squared but also 
in t e r m s  of the velocity curl  squared, whose coefficient is proport ional  to the corre la t ion  distance between 
veloci t ies .  If many more  than one molecule are  packed into this distance,  then the mechanics  of continua 
is applicable.  In this way, we have assumed that it is  eas ie r  to rotate than to deform a fluid. In the general  
case it would be n e c e s s a r y  also to include a t e r m  which is proport ional  to the deformation rate  squared.  

If dissipative forces  are  neglected,  then P a s c a l ' s  Law may be applied to a fluid, i . e . ,  one may con-  
s ider  p r e s s u r e  to be a sca la r  quantity. Assuming the fluid to be incompress ib le ,  we will wri te  for it the 
Lagrange function: 

In o rder  to pe r fo rm variat ional  calculus here ,  we f i rs t  change to Lagrangian coordinates ,  i . e . ,  
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at /o=\ at /,+(~v)L 
Variat ion with r e spec t  to the cur l  ~ mus t  account for  the fact  that  a curl  impl ies  differentiat ion with 

r e s p e c t  to Euler ian  and not Langrangian coord ina tes .  Consider ing that  the Jacobian of the t r ans fo rma t ion  
i s  equal to unity for  an i ncom pres s i b l e  fluid, we wri te  one of the par t ia l  de r iva t ives  as follows: 

av~ o (v~, x~, x~) / a (x .  x~, x~) o(v~, x~, x~) 
c)x I O(ai, a v a~) / O ( a  i, a 2, a 3) = O(ai, a2, a3) 

The var ia t ion  of this express ion  is  

8 av~._ o (axe, x~, x~) + o (v~, 8x,. x~) + 0 (v~, x~, axe) 
8xi 0 (a i, a~, a~) 0 (ai, av a~) d(a v a2, az) 

= 08v__U + _O(v2, 8x2) ~_ O(vv 5x~) 

Ox~ O (x~, x2) a (x .  xO 

Here  the f i r s t  t e r m  is  t r a n s f o r m e d ,  as  usual ly ,  by p a r t s  of the express ion  for  the fo rce  S = j" Ldt.  In t e -  

grat ing by p a r t s  the o ther  two t e r m s  with r e spec t  to space,  and changing to vec tor  notation,  we find the 
var ia t ional  der iva t ive  of the Lagrange function: 

- +  

--6r = p \~ -~  + (vV) v ) --}- J ~-~  curl cu / l ;+  (vy)curl. curl; 

+ ( curlW)cuflv + (curl curtvv) V,) + VP = O, (2) 

i . e . ,  the equation of mot ion.  

At a rigid wall it i s  n e c e s s a r y  to let  the tangential  component  of c u r l t ~  vanish,  since a wall does 
not allow a fluid to revolve  about an axis  in the plane of the wall .  F u r t h e r m o r e ,  as usual ,  the no r ma l  
component  of veloci ty is  also equal to ze ro  h e r e .  

The no rma l  components  of the m om en tum flux vanish at the f r ee  su r face .  We define these  compo-  
nents according to Eq.  (2), which will be wri t ten to re f lec t  the Conserva t ion  Law: 

0 (pv~4_jcuriicuflv5 @ 0 Ot " ~X k (P6lk+pvivh + dV~curl~curlv 

Thus,  the mom en t um  density becom es  

and the momen tum flux density 

+ Jvkcurlicurl~ + Jcurit ~curi~ v) = 0. (3) 

pV l -~- Jcurl~curl~ (4) 

vkcuri ~ curl V+curL vcurl (5) 

The t e r m s  which a re  functions of the veloci ty and the velocity curl  may  be cha rac t e r i zed  as  dynamic 
s t r e s s e s .  This t enso r  is  s y m m e t r i c .  A s y m m e t r y  appea r s  only when rotat ion not included in curl  ~" is  
taken into account .  

In o rde r  to find the m om en t  densi ty,  one mus t  vary  the coordinates  and the veloci t ies  cor responding  
to a rotat ion through a smal l  angle 6~ .  It i s  easy to show then that  the var ia t ion  5 M~ which should vanish,  
i s  equal to 

d [7, pv+dcurl curl~]. (6) 

Consequently,  the m o m e n t  density is  

iT, 0v~+ Jcu~l ourQ, (7) 
in ag reemen t  with express ion  (5) for  the momen tum densi ty .  

In o rde r  to find the exp res s ions  for  the energy  density and the energy flux densi ty,  it i s  n e c e s s a r y ,  
as usual ly,  to mult iply Eq. (2) scMar ly  by ~ and then in tegra te  by p a r t s  ove r  the vo lume.  Except  when the 
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fluid r o t a t e s  as  a r ig id  b o @ ,  one m a y  let  c u r v e  V = 0 at an inf ini te ly  f a r  s u r f a c e .  Then,  the  fo l lowing e x p r e s -  
sion is  obtained fo r  the e n e r g y  dens i ty  ( re ta in ing only the t e r m  which is  a funct ion of J):  

z j - -2-  (8) 

and fo r  the e n e r g y  flux dens i ty  c o r r e s p o n d i n g  to (8): 

Jv vcurl curly + - = -  (curly) 2 . (9) 
2 

We will now show that ,  when the en t i re  fluid r o t a t e s  as  a r ig id  body,  the e n e r g y  conta ins  no c o m -  
ponents  p ropo r t i ona l  to cu r l  ~ .  They  drop out of  Eq.  (2), s ince  in the c a s e  of  a ro ta t ing  r ig id  body cu r l  
V is not a funct ion of the space  c o o r d i n a t e s .  E x p r e s s i o n  (8) fo r  the e n e r g y  dens i ty  cannot  be sepa ra t ed  
now f r g m  the s u r f a c e - i n t e g r a l  c om pone n t s ,  s ince  these  do not  van i sh .  With the subst i tut ion ~ = [wr], dg* 
/ d r  = [c0r] and with the su r f a c e  i n t e g r a l s  r e t a ined ,  all t e r m s  conta in ing  cu r l  V a r e  ident ica l ly  r educ ib l e .  

In conc lus ion ,  we will de r ive  an equat ion fo r  the ve loc i ty  d i s t r ibu t ion  n e a r  a vo r t ex  f i l amen t .  By 
ana logy  to convent ional  h y d r o d y n a m i c s  but tak ing  into account  the angu la r  ve loc i t i e s  c o r r e l a t i o n ,  we have 

pctfflT-b ]curlcurlcuri'~ = O. (10) 

From here we find the expression for the velocity 

1 ( V f ~ _ K l ( r r  . (11) v -- ~ \l--r 

The filament radius is of the order of the quantity ~ i.e., is comparable to the correlation distance. 

3. The motion of an anisotropic fluid or a fluid just produced by melting a single crystal may have 
anisotropic inertial properties. The inertia must nowbe described by a symmetric tensor of second rank rather 
than by the scalar J. The principal axes of this tensor must be thought of as rigidly coupled to a fluid 
particle, then it can be treated as some set of certain constants characterizing the fluid. 

Since generally a volume element Of fluid rotates continuously, the kinematics of rotation must be 
introduced into the equation of motion. There is a method known in which rotations of axes can be repre- 
sented by four  Eu le r  p a r a m e t e r s  [5] with only one addit ional  condi t ion .  
by E u l e r  angles  as  fo l lows:  

~ i =  sin # sin ~ - - r  ;~2 sin # - -  - -  = - -  C O S  

2 2 2 

These  p a r a m e t e r s  a r e  e x p r e s s e d  

7 

2 

_ _  ~ , + ~  g3=c~ sin ~P q-qv ; $4=cos - -  cos - - ,  
2 2 2 2 

(12) 

whe re  ~a~vz = 1. A double Greek  symbol  deno tes  summat ion  f r o m  1 to 4 .  

The angu la r  ve loc i t i e s  and the c os i ne s  of the angles  between mov ing  and fixed axes  will be e x p r e s s e d  
in t e r m s  of p a r a m e t e r s  } a  and the i r  t i m e  d e r i v a t i v e s .  In the  convent ional  nota t ion  these  equa t ions  a r e  
not  quite s y m m e t r i c a l  and, t h e r e f o r e ,  they can be fo rmula ted  on the bas i s  of c e r t a i n  gene ra l  r u l e s .  An 
appl ica t ion of Paul i  m a t r i c e s  [6] and of q u a r t e r n i o n s  will be v e r y  helpful  h e r e .  

Fo r  an a r b i t r a r y  p a i r  of quan t i t i es  ~I, Sz o r  ~3, ~4 the Paul i  m a t r i c e s  a r e  set  up as  fo l lows:  

0 1 0 - - i  1 0 (13) 
1 0 ~ 0 0 - - 1  

The r o w s  and the co lumns  of t he se  m a t r i c e s  a r e  n u m b e r e d  with Greek  l e t t e r s  equivalent  to e i t he r  1, 2 o r  
3, 4 .  A c c o r d i n g  to P .  A .  D i r a c  [6], we in t roduce  ano the r  t h r e e  m a t r i c e s  Pl, P2, and P3 which look l ike  
~1, e2, and a3 but ac t  d i r ec t ly  on the p a i r  ~1,~2 o r  }3, ~4- In o the r  w o r d s ,  Pl s ingly  r e p r e s e n t  both p a i r s ,  
e t c .  Obviously ,  ~i and Pk a r e  t r a n s p o s a b l e  fo r  any i and k ,  s ince  they ac t  on d i f ferent  v a r i a b l e s .  The 
fol lowing r e l a t i ons  a r e  val id within each  t r i p l e t :  

oi2 = o~ = o~ = 1', ala~ = - -  0 ~ ~  = ia3; (14) 

q3q 1 : - - q 1 ( ~ 3  = ~q2; 6262 : - - 6 3 6 2  : i61 

and ana logous ly  fo r  Pk- 
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We will now de te rmine  such o p e r a t o r s  called quar te rn ions :  

r l  -~ - -  iP2~ I'2 ~--- iP2%; l"3 - ~  ~ i%. (15)  

Obviously,  each ope ra to r  I'~,2,a i s  a m a t r i x  of fourth rank acting on the bas i s  ~ .  At the same  t ime,  
however ,  the quant i t ies  denoted with symbols  1, 2 and 3, 4 have the vec to r  p r o p e r t y .  Namely,  during a 
rotat ion of the coordinate  s y s t em  r l ,  1"2, and ra are  symbol ica l ly  t r a n s f o r m e d  like vec to r  components:  

r ;  = % r ~ .  (16) 

T I t  can be eas i ly  proved  with the aid of equal i t ies  (14) that  the t r a n s f o r m  F i sa t i s f ies  the s ame  conditions 
as the or iginal ,  i . e . ,  that 

r A = - : r o r ~  = r e  ~ = r ~ = r ~ = l  ~ .  07)  

With the aid of quar te rn ions  it b ecomes  easy  to exp re s s  the p ro jec t ions  of angular  veloci ty  on the 
moving sy s t em of coordinates :  

~, = ~ (r~)~ ~. (1s) 

Omitting the Greek subscr ip t ,  we will s imply wri te  

o~ =~r~ .  (18a) 

As it tu rns  out, the cos ines  trik t h e m s e l v e s  can be expres sed  in t e r m s  of qua r t e rn ions .  For  this 
purpose  one needs  still another  t r ip Ie t  of quar te rn ions :  

r~ ~ iP~%; F2 ~ iP2; Fs = -  ip3%. (19) 

r l ,  1"2, and r3  a r e  subject  to the same  ru les  of mult ipl icat ion as r l ,  1"2, and r3,  and all Fi  quar te rn ions  
a r e  t r ansposab le  with all Fk qua r t e rn ions .  The cos ines  of ang les  betwen the old and the new axes  a re  
exp re s sed  in t e r m s  of r i, 1`k as  follows: 

a ik=  ~YiF~, (20.) 
t 

which allows us to use  the t en s o r  notat ion.  

We will cons ider  the rotat ion of some h y p e r m o l e c u l a r  associa t ion  o r  c lus t e r  to be ent i re ly  due to 
the motion of the volume e lement  within which i t  finds i t se l f .  Such a motion r e s e m b l e s  the rol l ing of a 
r igid body without sliding or  the revolution of the moon around the ear th :  the d i sp lacement  ra te  de t e rmines  
the angular  veloci ty  about the ax is .  In the case  of a continuum, the p ro jec t ions  of the angular  veloci t ies  
onto the fixed axes  can be exp re s sed  in t e r m s  of curl  V :  

1 curli v. (21) 0 
s i 

2 

In o r d e r  to calculate  the kinetic energy of rotat ion in the case  of an anisot ropic  medium,  one mus t  
p ro jec t  w ~ onto the axes  coupled to the m ed ium.  This  is  accompl ished with the aid of re la t ions  (20): 

1 -* 
~P~ =-~oi=cr176 ~FiFk~ �9 ~-  curl h v. (22) 

Equations (22) yield the k inemat ic  conditions for  de termining  the Eu le r  p a r a m e t e r s  ~tr, if  the relat ion 
~ = ~a~a = 1 is a lso  used .  The der iva t ive  ~a mus t  be understood in the ma t e r i a l  sense .  

During the motion of a continuum with anisotropic  p r o p e r t i e s ,  however ,  the veloci ty cannot in fact  
be found sepa ra te ly  f rom the p a r a m e t e r s  ~c~ also contained in the equations of mot ion .  In o r d e r  to wr i te  
out these  equations,  we will cons t ruc t  the cor responding  Lagrange  function. In the absence  of d iss ipat ive  
fo rces ,  the p r e s s u r e  mus t  be f i r s t  t rea ted  as  a s ca l a r  quanti ty.  Denoting the f i r s t  pr incipal  m o m e n t s  of 
iner t i a  by j(1), j(2), and j(3), we wri te  the Lagrange  function as follows: 

3 

L= ; ~dV= ~ (2_~ + ~ E  J(i) ~ik~it cttr!k ~.t'~curll-~__p)dy. (23) 
i ~ l  

in pe r fo rming  a var ia t ion,  one mus t  cons ider  the va r i ab le  quanti t ies  ~ ik  to be hmct ions  of the 
Lagrangian coordinates ,  as also the p a r a m e t e r s  ~c~ �9 The rotat ion field of local  axes  of iner t ia  is  then 
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determined  f r o m  the k inemat ic  re la t ions  (22) and (23) toge ther  with the dynamic equat ions.  
i s  calculated analogously as  for  the i so t rop ic  ca se .  Let  ~ J  be the component  of the density of the 
Lagrange  function which is  due to rotation~ Let  

3 

5~,,~s ~ 6 j(i} O;iho~ilcurl h u.curl x v~/z6curl; v 

1 f~h5 (Ov~ Or, ) 

w h e r e f  1 = (1/2)e/ikfik.  Then the var ia t ional  der iva t ive  is  

. . . .  -~-curl k V - -  q-" q- (vv) - -  
5x, Ox~ Ox~ Oxk - ~  Oxk 

The var ia t ion 

(24) 

(25) 

In this form i t  i s  not equal to ze ro ,  however ,  because  of the nonholonomie coupling between the va r i ab l e s  
based nn equality (22). In o r d e r  to wr i te  the equation of mot ion,  one mus t  take this  coupling into account 
as an additional condition. By vi r tue  of the homogenei ty  of (22) with r e s p e c t  to the genera l ized  veloci t ies ,  
p r o p e r t i e s  which make  the s y s t e m  conse rva t ive  a r e  re ta ined ,  i . e . ,  a nonholonomic coupling of this kind 
does not imply  d iss ipa t ion .  It  i s  to be noted that the equation does not contain second de r iva t ives  of ~ and, 
t he r e fo re ,  the p a r a m e t e r s  ~ a re  pure ly  k inemat ic  ones .  

a" (al, a2, a3) 
Otik 
F i 
6ik 
elk/ 
~123 = --~213 = 1 

J 
j(1), j(2), j(3) 

K1 
L 

wi 
P 
~(xl, x2, x3) 
P 
Pl, P2~ P3 
S 
0-i, 0"2, 0"3 

V(VI, V2, V3) 

~o~(o~ = I ,  2, 3, 4) 
~, r 

N O T A T I O N  

is the Lagrangian  coordina tes  of a fluid par t ic le ;  
is  the di rect ional  cos ines  of the angles between fixed and moving axes;  
i s  the quar te rn ions ;  
is  the unit t ensor ;  
i s  the comple te ly  a n t i s y m m e t r i c  tensor ;  

i s  the s c a l a r  coeff icient  cha rac t e r i z ing  the density of the momen t  of iner t ia ;  
i s  the densi ty of the m omen t s  of iner t i a  t en so r  (of i ts  pr incipal  values);  
is  the f i r s t - o r d e r  MacDonald function; 
is  the Lagrange  function for  a fluid; 
is  the densi ty of the Lagrange  function for  a fluid; 
i s  the components  of the angular  veloci ty vec tor ;  
i s  the p r e s s u r e ;  

if  the rad ius  vec to r  in the fixed s y s t e m  of coordinates ;  
i s  the densi ty of the medium;  
is  the m a t r i c e s  analogous to the Pauli  m a t r i c e s ;  
i s  the force;  
i s  the Paul i  m a t r i c e s ;  
is  the veloci ty  of the fluid; 
is  the Eu le r  p a r a m e t e r s ;  
is the Eu le r  angles .  
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